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Abstract

The problem of determining the shape of a straight cooling fin of minimum volume without the ‘‘length of arc’’

assumption is addressed. Proceeding from the conventional assumptions of one-dimensionality of the temperature

distribution and its linearity for the minimum volume fin we found the profile of the optimum fin to be a circular arc

and computed its geometric parameters. The volume of the optimum circular fin found in this paper is 6.21–8 times

smaller than the volume of the corresponding Schmidt�s parabolic optimum fin. The optimum circular fin tends to be

shorter and to have a larger base height than Schmidt�s fin.
� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Fins are surface extensions frequently used in heat

exchange devices for the purpose of increasing heat

transfer rates between solid surfaces at a high tempera-

ture and surrounding fluids at a low temperature, see

e.g. [1]. Numerous theoretical and experimental studies

[2–7] suggest that the thermal performance of fins de-

pends critically on their shape. Fins with variable

thickness were first considered in the classical works by

Harper and Brown [2] and Schmidt [3]. Owing to the

combined action of axial conduction and transverse

convection, the temperature in fins varies mostly longi-

tudinally so that the transversal temperature change is

generally viewed as insignificant. This assumption is

commonly referred to as ‘‘one-dimensionality of the

temperature distribution.’’ As usual, the analysis of the

thermal performance of straight fins will be limited to

the case of symmetric fins (see Fig. 1, where XZ is the

plane of symmetry of the fin).
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Maximization of heat transfer from a heated surface

through a straight fin to a surrounding fluid for a given

amount of material was first analyzed in 1926 by Sch-

midt [3]. Equivalently, the problem consists of mini-

mizing the volume of a straight fin that dissipates a given

amount of heat to the ambient fluid. Invoking an illu-

minating intuitive argument, Schmidt found that the

most favorable dimensions for a straight fin are those

that produce a linear temperature profile along the fin.

In this case the heat flux along the fin is uniform. Three

decades later, Duffin [8] confirmed the validity of Sch-

midt�s analysis employing rigorous methods of calculus

of variations.

Proceeding from the linear temperature distribution

along the fin length, Schmidt found that the optimum

profile of a straight fin is convex parabolic. The shape of

the parabola is completely determined by two pre-

specified quantities of thermal nature: the ratio c ¼ h=k
of the heat transfer coefficient h and the thermal con-

ductivity k of the fin material and the dimensionless

quantity q ¼ q0=ðkh0Þ, where q0 is the heat flow through

the fin semi-base per unit depth and h0 is the difference

between the temperatures of the heated surface and the

surrounding fluid, see formulas (11) below. For a de-

tailed treatment of Schmidt�s work the reader is referred

to [4].
ed.
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Nomenclature

A fin profile semi-area

h heat transfer coefficient

k thermal conductivity

L fin length

q0 heat transfer rate at the fin semi-base per

unit depth

W fin depth

x longitudinal space variable

y transversal space variable

y0 fin semi-thickness at the base

Greek symbols

c h=k ratio

h temperature excess

h0 temperature excess at the fin base

q dimensionless q0, q0=ðkh0Þ

Superscript

* refers to the optimum fin found in the pre-

sent work

Fig. 1. Straight cooling fin.

5146 L. Hanin, A. Campo / International Journal of Heat and Mass Transfer 46 (2003) 5145–5152
A key assumption shared by the three classical pub-

lications [2–4] and many subsequent works for that
matter (see e.g. [5,6,8]) is the omission of the ‘‘length of

arc’’ of the fin profile. From a physical standpoint, the

‘‘length of arc’’ condition is equivalent to the assump-

tion that heat is dissipated from the fin to the sur-

rounding fluid in the direction orthogonal to the plane

of symmetry of the fin (that is, along Y axis in Fig. 1). In

reality, however, the direction of heat flux from the fin to

the fluid is orthogonal to the fin surface.

Maday [7] was the first researcher who addressed the

impact that the ‘‘length of arc’’ assumption exerts on the

optimum profile shape of straight fins. He pointed out

that the differential area element of the semi-surface per

unit depth applicable to the straight fin should be

expressed by the relation dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q
dx, where

y ¼ yðxÞ stands for the fin profile function. In particular,

the approximation dS ’ dx is equivalent to the elimi-

nation of the ‘‘length of arc.’’

The problem of optimum fin design was set up in [3,4]

as a search for the optimum fin shape, length L, and
semi-height at the fin base y0, given the thermal pa-

rameters q0, h0, h and k. In contrast to this, Maday [7]

was looking for a minimum volume fin with a fixed y0.
He formulated the problem as a two-point boundary

value problem, and solved it numerically using the

Pontryagin�s Maximum Principle. The optimum profile

reported in [7] is reasonably close to Schmidt�s convex

parabolic profile for a large initial portion of the fin

length, but closer to the end contains some wavy irreg-

ularities. The volume of the fin found in [7] was only

slightly smaller than the volume of Schmidt�s fin with the

same height. For example, for q ¼ 0:1, the wavy optimal

shape is about 15% shorter than Schmidt�s fin and

produces a 1.6% volume reduction over the latter, while

for q ¼ 0:02, their lengths are close and the volume re-

duction is 1%. It was also claimed in [7] that the wavi-

ness diminishes when q tends to zero. An important

numerical finding in [7] is that, with the ‘‘length of arc’’

assumption lifted, the temperature distribution for the

optimum fin is still linear.
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The goal of the present work is to obtain an exact

analytic form for the optimum profile of a straight fin

that minimizes the fin volume and procures dissipation

of a given heat flow per unit depth to the surrounding

fluid. When solving this problem, we consider the ther-

mal parameters q0, h0, h and k as fixed while all geo-

metric parameters of the fin (semi-height at the fin base,

length, and profile shape) are subject to optimization. In

our mathematical development we eliminate the ‘‘length

of arc’’ assumption altogether.

The optimum fin profile obtained in this work turns

out to be a circular arc. It tends to be shorter and to

have a larger semi-height at the base than the corre-

sponding Schmidt�s fin. The most striking finding is that

the volume of the optimum circular fin is 6.21–8 times

smaller than the volume of Schmidt�s fin.
Although the problem of optimum fin design is for-

mulated and solved for given heat flow q0 and temper-

ature excess h0, the actual heat flow generated by the

optimum fin, as determined by the temperature distri-

bution, will be somewhat different from q0, due to var-

ious simplifying assumptions involved in the derivation

of the optimum fin shape. To account for this departure,

to gauge the thermal efficiency of the fin for other values

of heat flow and temperature excess at the fin base (for

which the fin is not necessarily optimal), and to allow for

comparison of various fin designs, the fin performance e
is used as a figure-of-merit. The latter is usually defined

as the ratio of the heat transfer rate through the fin base

to the heat transfer rate without the fin. Thus, for

straight symmetric fins, e ¼ q0=ðhy0h0Þ. This quantity

can be determined either numerically through a more

advanced mathematical model or experimentally. It was

shown by Graff and Snider [9] that omission of the

‘‘length of arc’’ always underestimates the heat transfer

performance of a straight fin. Therefore, the advantage

of the optimum circular fin over Schmidt�s fin (whose

design neglected the curvature of the fin boundary) in

terms of thermal performance may appear to be less

staggering than in terms of the fin volumes. For a de-

tailed comparison of the optimum circular fin with

Schmidt�s fin, the reader is referred to Section 3.

Similar to the findings of the works [3,4], the geom-

etry of the optimum circular fin profile is completely

determined by the parameters c and q. This explains why
the ratios of the volume of the circular optimum fin to

the volume of Schmidt�s fin found in the present work

are significantly smaller than those reported in [7]: fixing

the fin semi-height at the base y0 forces one to deal with

suboptimal fins.
2. Problem formulation

We are looking for a straight homogeneous sym-

metric fin (see Fig. 1) with minimum volume that dissi-
pates a given amount of heat 2q0 per unit depth (length

in the Z direction) from a heated wall at a given tem-

perature to the ambient fluid. The fin geometry is de-

termined by the semi-profile function yðxÞ, 06 x6 L,
where L is the fin length. Let y0 :¼ yð0Þ be the semi-

height of the fin base. Denote by h the difference between
the temperature at some point in the fin and the tem-

perature of the ambient fluid, and let h0 > 0 be the

corresponding temperature excess at the wall.

We proceed from the following assumptions:

1. The thermal conductivity k of the fin and the heat

transfer coefficient h are temperature-independent.

2. The temperature excess h in every vertical fin cross-

section is constant: h ¼ hðxÞ. Then the same is true

for the heat flow 2q through the fin cross-section

per unit depth.

3. The processes of heat conduction along the fin and

heat convection from the fin to the fluid are steady-

state.

4. Heat loss through the two extreme fin cross-sections

(at z ¼ 0 and z ¼ W ) is negligible. Also, heat dissipa-

tion by radiation is insignificant. Thus, our analysis is

two-dimensional.

5. Function y is continuous on ½0; L� and differentiable

on ð0; LÞ.

The equations

q ¼ �ky
dh
dx

ð1Þ

and

dq
dx

¼ �hh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q
ð2Þ

govern the heat transfer along the fin and from the fin to

the ambient fluid, respectively. These equations satisfy

the following boundary conditions:

hð0Þ ¼ h0; ð3Þ

qð0Þ ¼ q0 ð4Þ

and

yðLÞdh
dx

ðLÞ ¼ 0: ð5Þ

Eq. (5) reflects the fact that the heat flow at the tip of the

fin is equal to 0 which follows from the assumption that

the entire heat flux from the wall is dissipated by the fin.

The latter assumption can also be expressed in the form

h
Z L

0

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q
dx ¼ q0: ð6Þ
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It is clear that given (1), (2) and (4), Eqs. (5) and (6) are

equivalent. Let also

A ¼
Z L

0

yðxÞdx ð7Þ

be the fin cross-sectional semi-area to be minimized.

We now give a mathematical formulation of the

problem:

Given the temperature excess h0 and heat flow per unit

depth q0, find the fin length L, the semi-height at the fin

base y0, and the fin shape yðxÞ, 06 x6 L, with yð0Þ ¼ y0,
for which Eqs. (1) and (2) together with the boundary

conditions (3)–(5) are satisfied, and the area functional (7)

is minimized.

Following a heuristic argument by Schmidt [3], we

will assume that for the optimum fin configuration, the

temperature profile along the fin is linear:

hðxÞ ¼ h0 � mx; 06 x6 L; ð8Þ

where m > 0. Eq. (1) suggests that the linearity of the

temperature profile is equivalent to the heat flow per

unit cross-sectional area being constant.

Under the ‘‘length of arc’’ assumption Eq. (2) takes

on a simpler form

dq
dx

¼ �hh:

Significant simplification of Eq. (2) is the reason why the

‘‘length of arc’’ assumption is widely used in the litera-

ture related to optimum fin design. It should be men-

tioned, however, that Schmidt�s argument, that leads to

the linearity of the temperature profile for the optimum

fin, is independent of the ‘‘length of arc’’ assumption

(see [7] for a numerical corroboration).

The geometric characteristics and shape of the opti-

mum parabolic fin found by Schmidt [3] can be ex-

pressed through the parameter

c ¼ h
k

ð9Þ

and the dimensionless quantity

q ¼ q0
kh0

: ð10Þ

Specifically,

L ¼ 2q
c
; y0 ¼

2q2

c
; A ¼ 4q3

3c2
;

yðxÞ ¼ c
2

2q
c

�
� x

�2

; 06 x6 L: ð11Þ

Note that yðLÞ ¼ 0. Additionally, for Schmidt�s opti-

mum fin one has

m ¼ h0
L
¼ ch0

2q

which in view of (8) implies that hðLÞ ¼ 0.
A straightforward computation shows that the length

of the parabolic fin profile (11) is

S ¼ 1

2c
2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

ph
þ lnð2qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

p
Þ
i
: ð12Þ
3. Solution of the problem

Differentiating Eq. (1) in x with Eq. (2) and notation

(9) taken into account we have

yh00 þ y0h0 � ch
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q
¼ 0:

For the linear temperature function (8), this equation

becomes

y0 ¼ �cðl� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q
; ð13Þ

where

l :¼ h0
m

> 0: ð14Þ

It follows from the second law of thermodynamics that

hðxÞP 0, 06 x6L, which implies that h0 PmL or

equivalently

L6 l: ð15Þ

Hence in view of (13) we have y0ðxÞ6 0, 06 x6 L. Then
Eq. (13) yields

y0ðxÞ ¼ � cðl� xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2ðl� xÞ2

q ; 06 x6 L; ð16Þ

where we must have cl6 1, that is,

l6
1

c
: ð17Þ

Observe that in view of h0ðLÞ ¼ m > 0 the boundary

condition (5) becomes simply

yðLÞ ¼ 0: ð18Þ

The solution of Eq. (16) satisfying the boundary

condition (18) is given by

yðxÞ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2ðl� LÞ2

q�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2ðl� xÞ2

q �
: ð19Þ

Therefore,

y0 ¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2ðl� LÞ2

q�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2l2

p �
: ð20Þ

Setting x ¼ 0 in (1) we have q0 ¼ ky0m, whence using

(10), (14) and (20) we find that
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cql ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2ðl� LÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2l2

p
: ð21Þ

Eq. (19) describes an arc of the circle

ðx� lÞ2 þ ðy � mÞ2 ¼ 1

c2
; where

m ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2ðl� LÞ2

q
: ð22Þ

Thus, under the assumptions formulated above, every

fin shape that produces a linear temperature distribution

is necessarily circular. The family of circles (22) depends

on two parameters l, L > 0 which are subject to the

conditions

0 < L6 l6
1

c
; ð23Þ

see (15) and (17). Eq. (21) restricts it to a one-parametric

subfamily. In what follows, we optimize the remaining

parameter to obtain a fin with the smallest cross-sec-

tional area.

Integrating the function (19) and invoking (7) we find

that

2cA ¼ ðLþ lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2ðl� LÞ2

q
� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2l2

p

� 1

c
sin�1ðclÞ

�
� sin�1½cðl� LÞ�

�
: ð24Þ

Therefore, the problem is to minimize the right-hand

side of (24) over all L, l > 0 that satisfy Eq. (21) and the

constraints (23). To solve this problem, denote

a :¼ sin�1ðclÞ and b :¼ sin�1½cðl� LÞ�; ð25Þ

and observe that the constraints (23) translate into the

inequalities 06 b < a6 p=2. We solve Eq. (25) for l and

L to obtain

l ¼ sin a
c

and L ¼ 1

c
ðsin a� sinbÞ: ð26Þ

Combining Eqs. (21), (24) and (26) we conclude that in

terms of a and b our problem consists of minimizing the

function

2c2A ¼ ðsin a� sin bÞ cos bþ ðcosb� cos aÞ sin a� aþ b

ð27Þ

for a, b subject to the conditions

q sin aþ cos a ¼ cos b; 06 b < a6
p
2
: ð28Þ

Introduce the function

wðaÞ :¼ q sin aþ cos a

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
cosða� xÞ; where x ¼ tan�1 q:
Observe that wð0Þ ¼ wð2xÞ ¼ 1 and moreover, wðaÞ > 1

for a 2 ð0; 2xÞ. In particular, for qP 1, we have

xPp=4 so that Eq. (28) has no solution. Physically, this

means that in the case qP 1 the circular fin in question

cannot dissipate the entire heat flux 2q0, given the base

temperature excess h0 and the thermal conductivity k.
From now on we will be assuming that 0 < q < 1. In

this case, for each a 2 ½2x; p=2�, there exists a unique

angle b satisfying conditions (28). Then, the right-hand

side of Eq. (27) takes on the form

/ðaÞ ¼ sin a

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðq sin aþ cos aÞ2

q �
ðq sin aþ cos aÞ

þ q sin2 aþ cos�1ðq sin aþ cos aÞ � a:

Thus, our problem reduces finally to minimizing the

function /ðaÞ for 2x6 a6 p=2. Graphs of the function

/ for various values of q are shown in Fig. 2. The graphs

suggest that the minimum value of the function / on the

interval ½2x; p=2� is attained for a ¼ p=2 and equals

UðqÞ :¼ 2q� q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� sin�1 q; ð29Þ

while for the corresponding value of b we have

b ¼ cos�1 q. From Eqs. (14), (20), (26) and (27) we find

the following quantities that characterize the optimum

circular fin:

l� ¼ 1=c; m� ¼ ch0; L� ¼ 1

c
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Þ;

y�0 ¼ q0
hh0

¼ q
c
; A� ¼ UðqÞ

2c2
: ð30Þ

Observe that, by contrast to Schmidt�s fin, the temper-

ature excess at the tip of the optimum circular fin is non-

zero. In fact, it follows from Eqs. (8) and (30) that

hðL�Þ ¼ h0 � m�L� ¼ h0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
:

Expanding the functions involved in (29) we find that,

for small q,

L� ¼ q2

2c
þOðq4Þ; UðqÞ ¼ q3

3
þOðq5Þ

and A� ¼ q3

6c2
þOðq5Þ; ð31Þ

compare with (11).

It follows from (19) and (30) that the optimum cir-

cular fin profile is given by the function

f �ðxÞ ¼ 1

c
q

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1� cxÞ2

q �
; 06x6

1

c
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Þ:

ð32Þ



Fig. 2. Graphs of the function /ðaÞ q ¼ 0:1; . . . ; 0:9.
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The graph of this function represents an arc of the circle

(see Fig. 3) given by the equation

x
�

� 1

c

�2

þ y
�

� q
c

�2

¼ 1

c2
;

Fig. 3. Cross-section of the straight optimum circular fin.
compare with (22). Clearly, the central angle of the arc

is p=2� b ¼ sin�1 q, and hence for the length of the arc

we have

S� ¼ sin�1 q
c

: ð33Þ
4. Comparison with Schmidt’s fin

Comparing the geometric parameters of the optimum

circular fin (30) and (32) with those of Schmidt�s fin

given in (11) we conclude that, for the same values of the

thermal quantities c, q and same depth, the optimum

circular fin is shorter and has a larger base. The saving in

the amount of material required for manufacturing the

optimal circular fin, as compared to the Schmidt�s fin, is
equal to the ratio A=A� of their semi-profile areas that

can be computed from Eqs. (30) and (11) as follows:

gðqÞ :¼ A
A� ¼

8q3

3UðqÞ

¼ 8q3

3ð2q� q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� sin�1 qÞ

: ð34Þ

The graph of the function gðqÞ for 06q6 1 displayed in

Fig. 4 suggests that the function gðqÞ is decreasing and

takes values between gð1Þ ¼ 16=½3ð4� pÞ� ’ 6:21 and

gð0Þ ¼ 8, see the expansion for UðqÞ in (31). Thus, the



Fig. 4. The ratio A=A� of the cross-sectional semi-areas of Schmidt�s fin and the optimum circular fin as a function of parameter q.

Fig. 5. The ratio S=S� of the semi-profile arc lengths of Schmidt�s fin and the optimum circular fin as a function of parameter q.

L. Hanin, A. Campo / International Journal of Heat and Mass Transfer 46 (2003) 5145–5152 5151
optimum circular fin requires from 6.21 to 8 times less

material than Schmidt�s optimum fin.

Another aspect related to the advantage of the opti-

mum circular fin over Schmidt�s fin is revealed when one
compares the amount of heat flow dissipated by the two

fins made from the same material and having the same

depth and volume. Assuming that the parameters h, k,
and h0 for both fins are equal, we denote by q�0 and q0 the
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heat transfer rates per unit depth for which the optimum

circular and Schmidt�s fins, respectively, were designed,

and by q� and q the corresponding dimensionless

quantities defined in Eq. (10). Using Eqs. (11) and (30)

we derive from A� ¼ A that

Uðq�Þ
2c2

¼ 4q3

3c2
;

hence it follows from (34) that

gðq�Þ ¼ q�

q

� �3

:

Therefore,

q�0
q0

¼ q�

q
¼ gðq�Þ1=3:

This formula suggests that the optimum circular fin

dissipates from 1.74 to 2 times larger heat flow than the

corresponding Schmidt�s fin.
The advantage in thermal performance of the opti-

mum circular fin, as compared to Schmidt�s fin, is due to
the fact that the distance from the heated wall to the fin

surface is much shorter for the former than for the latter.

Another factor that has a bearing on the thermal per-

formance of a fin is its surface area. For two straight

symmetric fins with the same depth and profiles van-

ishing at the end, the ratio of their surface areas is equal

to the ratio of their semi-profile arc lengths. From Eqs.

(12) and (33) we find that

mðqÞ :¼ S
S� ¼

2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

p
þ lnð2qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

p
Þ

2 sin�1ðqÞ
:

The graph of the function mðqÞ for 06 q6 1 shown in

Fig. 5 suggests that, although Schmidt�s fin is substan-
tially longer and has more than 6 times larger profile

area than the optimum circular fin, its surface area is

only 1.88 to 2.30 times larger than that of the circular

fin.

There remains an important question as to what ex-

tent the heat flow in the optimum circular fin (as well as

in Schmidt�s fin) satisfies the one-dimensionality as-

sumption. Answering this question, as well as conduct-

ing a comprehensive comparative analysis of the thermal

performance of these fins, calls for an experimental

study.
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